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ABSTRACT: This article presents a new method to compute
matrices from numerical simulations based on the ideas of sparse
sampling and compressed sensing. The method is useful for
problems where the determination of the entries of a matrix
constitutes the computational bottleneck. We apply this new
method to an important problem in computational chemistry:
the determination of molecular vibrations from electronic
structure calculations, where our results show that the overall
scaling of the procedure can be improved in some cases.
Moreover, our method provides a general framework for
bootstrapping cheap low-accuracy calculations in order to reduce the required number of expensive high-accuracy calculations,
resulting in a significant 3× speed-up in actual calculations.

■ INTRODUCTION

Matrices are one of the most fundamental objects in the
mathematical description of nature, and as such they are
ubiquitous in every area of science. For example, they arise
naturally in linear response theory as the first term in a
multidimensional Taylor series, encoding the response of each
component of the system to each component of the stimulus.
Hence, in many scientific applications, matrices contain the
essential information about the system being studied.
Despite their ubiquity, the calculation of matrices often

requires considerable computational effort. Returning to the
linear response theory example, it might be necessary to
individually calculate the response of every component of the
system to every component of the stimulus and, depending on
the area of application, each individual computation may itself be
quite expensive. The overall expense stems from the fact that
evaluating amatrix of dimensionN×M requires, in principle, the
individual evaluation ofN×M elements. But this does not always
have to be the case.
For example, if we know a priori the eigenvectors of an N × N

diagonalizable matrix, then we can obtain the full matrix by only
calculating the N diagonal elements. Similarly, a sparse matrix,
which contains many zero elements, can be evaluated by
calculating only the nonzero elements, if we know in advance
where such elements are located. In this article, we present a
general approach that can produce a considerable reduction in
the cost of constructing a matrix in many scientific applications
by substantially reducing the number of elements that need to be
calculated.
The key numerical procedure of our approach is a method to

cheaply recover sparse matrices with a cost that is essentially
proportional to the number of nonzero elements. The matrix

reconstruction procedure is based on the increasingly popular
compressed sensing approach,1−4 a state-of-the-art signal
processing technique developed to minimize the amount of
data that needs to be measured to reconstruct a sparse signal.
Although the theory of compressed sensing is extensive and

well-developed, the use of compressed sensing and sparse
sampling methods in scientific development has been dominated
by experimental applications, including multidimensional
nuclear magnetic resonance,5,6 super-resolution microscopy,7

and other applications in spectroscopy and beyond.8−15

However, compressed sensing is also becoming a tool for
computational applications.16−22 In particular, in previous work
we have shown that compressed sensing can also be used to
reduce the amount of computation in numerical simulations.16

In this article, we apply compressed sensing to the problem of
computing matrices. This method has two key properties. First,
the cost of the procedure is quasi-linear with the size of the
number of nonzero elements in the matrix, without the need to
know a priori the location of the nonzero elements. Second, the
reconstruction is exact. Furthermore, the utility of the method
extends beyond the computation of a priori sparse matrices. In
particular, the method suggests a new computing paradigm in
which one develops methods to find a basis in which the matrix is
known or suspected to be sparse, based on the characteristics and
prior knowledge of the matrix, and then afterward attempts to
recover the matrix at lower cost.
To demonstrate the power of our approach, we apply these

ideas to an important problem in quantum chemistry: the
determination of the vibrational modes of molecules from
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electronic structure methods. These methods require the
calculation of the matrix of the second derivatives of the energy
with respect to the nuclear displacements, known as the force-
constant or Hessian matrix. This matrix is routinely obtained in
numerical simulations by chemists and physicists, but it is
relatively expensive to compute when accurate quantum
mechanical methods are used.
The search for more efficient methods of computing Hessian

matrices has a long history. One of the earliest advances was the
development of theoretical methods to compute the derivatives
of the matrix analytically, rather than numerically, first in one of
the simplest quantum mechanical methods known as Hartree−
Fock theory,23,24 then in more sophisticated higher-accuracy
correlated methods,25−27 and later in modern density functional
theory.28 These analytical derivative techniques have been
further optimized by systematically exploiting molecular
symmetries29 and by organizing calculations more efficiently by
working directly in the so-called atomic orbital basis.30,31 More
recent developments have applied Davidson methods to
compute only those vibrational modes relevant to searching for
the transition state in a chemical reaction while sidestepping the
computation of a full Hessian matrix.32,33 Finally, another
research frontier involves developing methods that scale
favorably with system size for computing energies34 and response
properties such as molecular vibrations,35,36 with the ultimate
goal of achieving practical techniques that exhibit linear scaling.
Our approach exploits the sparsity of the Hessian matrix and

cheap auxiliary calculations to further improve the efficiency of
computing the vibrational modes of molecules; moreover, our
approach is compatible with and complementary to some of the
aforementioned techniques. At the same time, our method
provides a general framework for bootstrapping cheap low-
accuracy calculations to reduce the required number of expensive
high-accuracy calculations, something which previously was not
possible to do in general.
We begin by discussing how compressed sensing makes it

practical to take a new approach for the calculation of matrices
based on finding strategies to make the matrix sparse. Next, we
introduce the mathematical foundations of the method of
compressed sensing and apply them to the problem of sparse
matrix reconstruction. This is the numerical tool that forms the
foundation of our approach. Finally, we illustrate these new ideas
by applying them to the problem of obtaining molecular
vibrations from quantum mechanical simulations.

■ FINDING A SPARSE DESCRIPTION OF THE
PROBLEM

The first step in our approach is to find a representation for the
problem where the matrix to be calculated is expected to be
sparse. In general, finding this sparsif ying basis is specific to each
problem and ranges from trivial to quite complex; it has to do
with the knowledge we have about the problem or what we
expect about its solution.
Leveraging additional information about a problem is an

essential concept in compressed sensing, but it is also a concept
that is routinely exploited in numerical simulations. For example,
in quantum chemistry it is customary to represent the orbitals of
a molecule in a basis formed by the orbitals of the atoms in the
molecule,37 which allows for an efficient and compact
representation and a controlled discretization error. This choice
comes from the notion that the electronic structure of the
molecule is roughly described by “patching together” the
electronic structure of the constituent atoms.

An ideal basis in which to reconstruct a matrix is the basis of its
eigenvectors, or eigenbasis, as this basis only requires the
evaluation of the diagonal elements to obtain the entire matrix.
Of course, finding the eigenbasis requires knowing the matrix in
the first place, so reconstructing a matrix in its eigenbasis is not
practically useful. However, in many cases it is possible to obtain
reasonable approximations to the eigenvectors (an idea which
also forms the basis of perturbation theory in quantum
mechanics). The approximate eigenbasis probably constitutes a
good sparsifying basis for many problems, as we expect thematrix
to be diagonally dominant, with a large fraction of the off-
diagonal elements equal to zero or at least small.
Since the determination of an approximate eigenbasis depends

on the specific problem at hand, a general prescription is difficult
to give. Nevertheless, a few general ideas could work in many
situations. For example, in iterative or propagative simulations,
results from previous iterations or steps could be used to generate
a guess for the next step. Alternatively, cheap low-accuracy
methods can be used to generate a guess for an approximate
eigenbasis. In this case, the procedure we propose provides a
framework for bootstrapping the results of a low-cost calculation
in order to reduce the required number of costly high-accuracy
calculations. This last strategy is the one we apply to the case of
molecular vibrations.
What makes looking for a sparsifying basis attractive, even at

some computational cost and code-complexity overhead, are the
properties of the recovery method. First, the cost of recovering
the matrix is roughly proportional to its sparsity. Second, the
reconstruction of the matrix is always exact up to a desired
precision; even if the sparsifying basis is not a good one, we
eventually converge to the correct result. The penalty for a bad
sparsifying basis is additional computation, which in the worst
case makes the calculation as costly as if compressed sensing were
not used at all. This feature implies that the method will almost
certainly offer some performance gain.
There is one important qualification to this gain. For some

matrices, there is a preferred basis in which the matrix is cheaper
to compute, and the extra cost of computing its elements in a
different basis might offset the reduction in cost offered by
compressed sensing.

■ COMPRESSED SENSING FOR SPARSE MATRICES

Once a sparse representation for the matrix is known, the
numerical core of our method for the fast computation of
matrices is the application of compressed sensing to calculate
sparse matrices without knowing a priori where the nonzero
elements are located. Related work has been presented in the
field of compressive principal component pursuit,38−41 which
focuses on reconstructing matrices that are the sum of a low-rank
component and a sparse component. Our work instead outlines a
general procedure for reconstructing any sparse matrix by
measuring it in a different basis.
Suppose we wish to recover an N × N matrix A known to be

sparse in a particular orthonormal basis {ψi} (for simplicity we
restrict ourselves to square matrices and orthonormal bases).
Without any prior knowledge of where the S nonzero elements of
A are located, it might appear that we need to calculate all N2

elements, but this is not the case.
In a different orthonormal basis {ϕi}, thematrixA has a second

representation B given by

=B PAPT (1)
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where P is the orthogonal change-of-basis matrix from the basis
{ψi} to the basis {ϕi}. Note that in general B is not sparse.
If we regard A and B asN2-element vectors, it is easy to see that

the change-of-basis transformation from A to B given by eq 1 is
linear. This fact enables us to use the machinery of compressed
sensing to reconstruct the full matrixA bymeasuring only some of
the entries of B.
For a fully general matrix A, we would indeed need to measure

all the entries of B so that A could be recovered by inverting the
linear system in eq 1. However, because the matrix A is sparse,
compressed sensing lets us do better. The idea is to measure only
some of the entries of B, which means that eq 1 is now
underdetermined and admits many possible solutions for A.
From these many solutions for A, we simply select the sparsest
one; it has been proven in general1−4 that this can be done in a
highly computationally efficient way by minimizing the sum of
the absolute values of the entries of A. The key insight of
compressed sensing is that, as more entries of B are measured,
the sparsest matrix Awhich satisfies the underdetermined system
converges to the true solution of the full system. Moreover, this
convergence typically happens long before the matrix B has been
fully sampled, particularly if the true matrix A is quite sparse.
The compressed sensing reconstruction is done by solving the

so-called basis pursuit (BP) problem,4,42

∥ ∥ = ∀ ∈B i j WA PAPmin subject to ( ) ,ij ij
A

1
T

(2)

where the 1-norm is considered as a vector norm
(∥A∥1 = ∑i,j|Aij|), the change-of-basis matrix P is known, and
W is a set of randomly measured entries in matrix B which are
known. We assume that we have some method of computing the
entries of B, but that the method is expensive, and we would
therefore like to recover A while computing as few of them as
possible. This approach to matrix reconstruction is illustrated in
Figure 1.
The size of the setW, a number that we callM, is the number of

matrix elements of B that are sampled.M determines the quality
of the reconstruction of A. From compressed sensing theory we
can find a lower bound forM as a function of the sparsity ofA and
the change-of-basis transformation.
One important requirement for compressed sensing is that the

sparse basis {ψi} for A and the measurement basis {ϕi} for B
should be incoherent, meaning that the maximum overlap
between any vector in {ψi} and any vector in {ϕi}

μ ψ ϕ= ⟨ | ⟩N max
i j i j, (3)

should be as small as possible (in general μ ranges from 1 to
N1/2). Intuitively, this incoherence condition means that the
change-of-basis matrix P should thoroughly scramble the entries
of A to generate B.
It can be proven3 that the number of entries of B which must

be measured in order to fully recover A by solving the BP
problem in eq 2 scales as

μ∝M S Nlog2 2
(4)

This scaling equation encapsulates the important aspect of
compressed sensing: if a proper measurement basis is chosen, the
number of entries which must be measured scales linearly with
the sparsity of the matrix and only depends weakly on the full size
of the matrix. For the remainder of this paper, we always choose
our measurement basis vectors to be the discrete cosine
transform (DCT) of the sparse basis vectors, for which the
parameter μ is equal to 21/2. The DCT is a common
transformation chosen for compressed sensing because it is
easy to implement, with fast and readily available algorithms for
its computation, and because it guarantees that the sparse basis
and the measurement basis are highly incoherent. Intuitively, this
ensures that each element from the measurement matrix B
contains as much information as possible about the elements of
the sparse matrix A. A small value of μ such as 21/2 cuts down on
the number of entries of B which must be measured in order to
fully recover the sparse matrix A. Of course, our method is
independent of this choice and could work with other basis
transformations as well.
In order to study the numerical properties of the

reconstruction method, we performed a series of numerical
experiments. We generated 100 × 100 matrices of varying
sparsity with random values drawn uniformly from the interval
[−1,1] and placed in random locations in the matrix. Matrix
elements were then sampled in the DCTmeasurement basis, and
an attempt was made to recover the original sparse matrix by
solving the basis pursuit problem in eq 2.
Figure 2 illustrates the percent of matrix elements that had to

be sampled for accurate recovery of the sparse matrix compared
with other recovery approaches. If no prior knowledge of a matrix
is used for its recovery, then one simply measures each entry; this
is the current paradigm in many scientific applications. If one

Figure 1.General scheme for the recovery of a sparsematrixA via compressed sensing. Rather than samplingA directly, the key is to sample thematrixB,
which corresponds to A expressed in a different (known) basis. Recovery of A from the undersampled entries of B proceeds via compressed sensing by
solving eq 2.
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knows exactly where the nonzeros in a sparse matrix are located,
one can simply measure those elements. Compressed sensing
interpolates between these two extremes: it provides a method
for recovering a sparse matrix when the locations of the nonzeros
are not known in advance. Although this lack of knowledge
comes with a cost, the recovery is still considerably cheaper than
measuring the entire matrix.

■ APPLICATION: MOLECULAR VIBRATIONS
Calculating the vibrations of amolecule, both the frequencies and
normal modes, is one of the most ubiquitous tasks in
computational chemistry.43 Integrated into nearly all computa-
tional chemistry packages, including the Q-Chem package used
for this study,44 molecular vibrations are computed by theoretical
and experimental chemists alike. Chemists routinely optimize
molecular geometries to find minimal energy conformations;
computing and confirming the positivity of all vibrational
frequencies is the standard method of assuring that a local
minimum has been found. Another common task is to find the
transition state for a proposed reaction: here it is also necessary
to compute the vibrations to find one mode with an imaginary
frequency, confirming the existence of a local maximum along the
reaction coordinate.45 Despite the centrality of molecular

vibrations in computational chemistry, it remains one of the
most expensive computations routinely performed by chemists.
The core of the technique lies in calculating the matrix of the

mass-weighted second derivatives of the energy with respect to
the atomic positions,

= ∂ ⃗ ⃗
∂ ∂

H
M M

E R R
R R

1 ( , ..., )
i j

N

i j
A ,B

A B

2 1

A B
(5)

where

⃗ ⃗E R R( , ..., )
N1

is the ground-state energy of the molecule, Ri
A is coordinate i of

atom A, andMA is its mass. Hence, the Hessian is a real 3N × 3N
matrix where N is the number of atoms in the molecule. When
the molecule is in a minimum energy conformation, the
eigenvectors of the Hessian correspond to the vibrational
modes of the molecule, and the square root of the eigenvalues
correspond to the vibrational frequencies.45

Our goal, therefore, is to understand how our approach can
reduce the cost of computing the Hessian matrix of a molecule.
We achieve this understanding in two complementary ways.
First, for a moderately sized molecule, we outline and perform
the entire numerical procedure to show in practice what kinds of
speed-ups may be obtained. Second, for large systems, we
investigate the ability of compressed sensing to improve how the
cost of computing the Hessian scales with the number of atoms.
Calculating the Hessian requires a method for obtaining the

energy of a given nuclear configuration. There exist many
methods to choose from, which offer a trade-off between
accuracy and computational cost. Molecular mechanics
approaches, which model the interactions between atoms via
empirical potentials,45 are computationally cheap for systems of
hundreds or thousands of atoms, while more accurate and
expensive methods explicitly model the electronic degrees of
freedom at some level of approximated quantummechanics, such
as methods based on density functional theory (DFT)46−48 or
wave function methods.37 We focus on these quantum
mechanical approaches, since there the computation time is
dominated by the calculation of the elements of the Hessian
matrix, making it an ideal application for our matrix-recovery
method.

Figure 2. Percent of entries that must be sampled for accurate recovery
of a matrix as a function of sparsity. Comparison between compressed
sensing and two limiting cases: “no prior knowledge” of sparsity and the
“perfect oracle”, which reveals where all nonzero entries are located.
Each point on the compressed sensing curve is an average of ten
different randomizations. The accuracy criterion is a relative error in the
Frobenius norm smaller than 10−7.

Figure 3. Quantum mechanical Hessian of benzene in the basis of atomic Cartesian coordinates (on the left) and in the basis of molecular mechanics
normal modes (on the right). Since the molecular mechanics normal modes form approximate eigenvectors to the true quantum mechanical Hessian,
the matrix on the right is sparse (close to diagonal) and therefore well-suited to recovery via compressed sensing.
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To recover a quantum mechanical Hessian efficiently with
compressed sensing, we need to find a basis in which the matrix is
sparse. While we might expect the Hessian to have some degree
of sparsity in the space of atomic Cartesian coordinates,
especially for large molecules, we have found that it is possible
to find a better basis. The approach we take is to use a basis of
approximated eigenvectors generated by a molecular mechanics
computation, employing the common MM3 force field,49 which
provides a cheap approximation to the eigenvectors of the
quantum mechanical Hessian.50 This is illustrated in Figure 3 for
the benzenemolecule (C6H6). The figure compares the quantum
mechanical Hessian in the basis of atomic Cartesian coordinates
with the same matrix in the approximate eigenbasis obtained via
an auxiliary molecular mechanics computation. The matrix in the
molecular mechanics basis is much sparser, and is therefore
better suited to recovery via compressed sensing.
The second derivatives of the energy required for the Hessian,

eq 5, can be calculated either via finite differences, generating
what are known as numerical derivatives, or using perturbation
theory, generating so-called analytical derivatives.51−54 A
property of the calculations of the energy derivatives is that the
numerical cost does not depend on the direction they are
calculated. This can be readily seen in the case of finite
differences, as the cost of calculating

⃗ ⃗ + Δ ⃗E R R R( , ..., , ..., )
j j N1

is essentially the same as computing

⃗ + Δ ⃗ + Δ ⃗ + ΔE R R R( , ..., , ..., )
j j N N1 1

As discussed previously, this ability to compute matrix elements
at a comparable cost in any desired basis is an essential
requirement of our method.
A second property of both numerical and analytical derivatives

that appears in variational quantum chemistry formalisms like
DFT or Hartree−Fock is that each calculation yields a full
column of the Hessian, rather than a single matrix element.
Again, this is easy to see in finite difference computations. We can
write the second derivative of the energy as a first derivative of the
force,

∂ ⃗ ⃗
∂ ∂

= −
∂ ⃗ ⃗

∂
E R R

R R

F R R

R
( , ..., ) ( , ..., )N

i j

j
N

i

2 1

A B

B 1

A
(6)

By the Hellman−Feynman theorem55,56 and the appropriate
correction for the Pulay forces,51 a single energy calculation
yields the forces acting over all atoms, so the evaluation of eq 6 by
finite differences for fixed A and i yields the derivatives for all
values of B and j, a whole column of the Hessian. An equivalent
result holds for analytic derivatives obtained via perturbation
theory.53,54 Thus, our compressed sensing procedure for this
particular application focuses on measuring random columns of
the quantum mechanical Hessian rather than individual random
entries.
The full compressed sensing procedure applied to the

calculation of a quantum mechanical Hessian is implemented
as follows:

1. Calculate approximate vibrational modes using molecular
mechanics.

2. Transform the approximate modes using the DCT matrix.
3. Randomly select a few of the transformed modes.

4. Calculate energy second derivatives along these random
modes to yield random columns of the quantum
mechanical Hessian.

5. Apply compressed sensing to rebuild the full quantum
mechanical Hessian in the basis of approximate vibrational
modes.

6. Transform the full quantum mechanical Hessian back into
the atomic coordinate basis.

7. Diagonalize the quantum mechanical Hessian to obtain
the vibrational modes and frequencies.

The optimal number of random modes can be selected
iteratively, repeating steps 3−7 adding more randommodes each
time until convergence is reached. See the Supporting
Information for details.
Figure 4 illustrates the results of applying our Hessian recovery

procedure to anthracene (C14H10), a moderately sized polyacene
consisting of three linearly fused benzene rings. The top panel
illustrates the vibrational frequencies obtained by the com-
pressed sensing procedure outlined above for different extents of
undersampling of the true quantum mechanical Hessian. Even
sampling only 25% of the columns yields vibrational frequencies
that are close to the true quantum mechanical frequencies, and
much closer than the molecular mechanics frequencies. The
middle panel illustrates the error in the vibrational frequencies
from the true quantum mechanical frequencies. Sampling only
30% of the columns gives a maximum frequency error of less than
3 cm−1, and sampling 35% of the columns yields nearly exact
recovery. The bottom panel illustrates the error in the normal
modes. Once again, sampling only 30% of the columns gives
accurate recovery of all vibrational normal modes to within 1%.
In short, our compressed sensing procedure applied to
anthracene reduces the number of expensive quantum
mechanical computations by a factor of 3. The additional cost
of the molecular mechanics computation and the compressed
sensing procedure, which take a few seconds, is negligible
compared to the reduction in cost for the computation of the
Hessian which for anthracene takes on the order of hours.
Having shown that our compressed sensing procedure gives a

3× speed-up for a moderately sized organic molecule, we now
move to larger systems and investigate how the cost of
computing the Hessian scales with the number of atoms. In
the absence of compressed sensing, if the entries of the Hessian
must be calculated independently, the cost of calculating the
Hessian would scale as O(N2) × OE, where OE is the cost of
computing the energy of a given nuclear configuration (the cost
of analytical and numerical derivatives usually have the same
scaling). For example, for a DFT-based calculation, OE is
typically O(N3). However, since many quantum mechanical
methods obtain the Hessian one column at a time, only O(N)
calculations are required, so the scaling is improved to
O(N) × OE.
How does compressed sensing alter this scaling? From eq 4,

the number of matrix elements needed to recover the Hessian via
compressed sensing scales as O(S log N), where S is number of
nonzero elements in the Hessian, so the net scaling is
O(S log N) × OE. By obtaining the Hessian one column at a
time, we expect the net scaling to improve to O(S/N log N) ×
OE. However, we should note that eq 4 is only valid in principle
for the random sampling of elements, and it is not necessarily
valid for a random column sampling. This scaling result illustrates
the critical importance of recovering the Hessian in a sparse basis,
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with S as small as possible. So what is the smallest S that can
reasonably be achieved?
For many large systems, the Hessian is already sparse in the

basis of atomic Cartesian coordinates. Since the elements of the
Hessian are partial second derivatives of the energy with respect
to the positions of two atoms, only direct interactions between
the two atoms, with the positions of all other atoms held fixed,
must be taken into account. For most systems we expect that this
direct interaction has a finite range or decays strongly with
distance. Note that this does not preclude collective vibrational
modes, which can emerge as a result of “chaining together” direct
interactions between nearby atoms.
If we assume that a system has a finite range interaction

between atoms, and since each atom has an approximately

constant number of neighbors, irrespective of the total number of
atoms in the molecule, the number of nonzero elements in a
single column of theHessian should be constant. Hence, for large
molecules, the sparsity S of the Hessian would scale linearly with
the number of atoms N. Putting this result into O(S/N log N) ×
OE yields a best-case scaling of O(log N) × OE, which is a
significant improvement over the original O(N) × OE in the
absence of compressed sensing.
To study the validity of our scaling results we have performed

numerical calculations on a series of polyacene molecules, which
are aromatic compounds made of linearly fused benzene rings.
For polyacenes ranging from 1 to 15 rings, Figure 5 illustrates the

average number of nonzeros per column in the Hessian matrices
obtained via molecular mechanics and quantum mechanical
calculations in the basis of atomic coordinates. In the molecular
mechanics Hessians, the average sparsity per column approaches
a constant value as the size of the polyacene increases, consistent
with each atom having direct interaction with a constant number
of other atoms.
Since the molecular mechanics Hessians illustrate the best-

case scenario in which the sparsity S scales linearly with the
number of atoms N, we attempted to recover these Hessians
directly in the basis of atomic coordinates via the compressed
sensing procedure we have outlined by sampling columns in the
DCT basis. Figure 6 illustrates the number of columns which
must be sampled to recover the Hessians to within a relative error
of 10−3 as a function of the size of the polyacene. Far fewer than
the total number of columns in the entire matrix need to be
sampled. Even more attractive is the fact that the number of
columns grows quite slowly with the size of the polyacene,
consistent with the best-case O(log N) × OE scaling result
obtained above. This result indicates that our compressed
sensing approach is especially promising for the calculation of
Hessian matrices for large systems. For comparison, we also
recovered the Hessians in their sparsest possible basis, which is
their own eigenbasis. This procedure is not practical for actual
calculation since it requires knowing the entire Hessian
beforehand, but it shows the best-case scenario and illustrates
how the compressed sensing procedure can be improved further
if an appropriate sparsifying transformation is known.
While the recovery of molecular mechanics Hessians provides

a clear illustration of the scaling of our compressed sensing

Figure 4. Results of applying our compressed sensing procedure to the
vibrational modes and frequencies of anthracene. (Top) Even by
sampling only 25% of the quantum mechanical Hessian, the vibrational
frequencies obtained via compressed sensing converge to those of the
true quantum mechanical Hessian. (Middle) Error in vibrational
frequencies for different extents of undersampling. When only 30% of
the columns are sampled, the maximum error in frequency is within 3
cm−1, and with 35% sampling, the recovery is essentially exact. (Bottom)
Error in vibrational normal modes for different extents of undersampling
on a logarithmic scale; the error is calculated as one minus the overlap
(dot product) between the exact quantummechanical normal mode and
the normal mode obtained via compressed sensing. Once 30% of the
columns are sampled, the normal modes are recovered to within 1%
accuracy.

Figure 5. Average sparsity per column (S/3N) of molecular mechanics
and quantummechanical Hessians in the basis of atomic coordinates for
the series of polyacenes. (An entry in the Hessian is considered nonzero
if it is greater than 10 (cm−1)2, 6 orders of magnitude smaller than the
largest entry.) In the molecular mechanics Hessians, the average sparsity
per column is roughly constant with the size of the molecule, because
each atom has a roughly constant number of neighbors regardless of the
size of the entire molecule.
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procedure, molecular mechanics matrix elements are not
expensive to compute in comparison with the rest of the linear
algebra operations required to diagonalize the Hessian. Hence,
from a computational standpoint, the real challenge is to apply
our procedure to the computation of quantum mechanical
Hessians.
As Figure 5 shows, the sparsity S of a quantum mechanical

Hessian does not necessarily scale linearly with the number of
atoms N in the molecule. Figure 7 illustrates the cost of

recovering the quantum mechanical Hessians of polyacenes
using compressed sensing in a variety of sparse bases. Recovering
the Hessian in the atomic coordinate basis already provides a
considerable computational advantage over directly computing
the entire Hessian. In fact, this curve mirrors the sparsity per
column curve for quantum mechanical Hessians in Figure 5,
consistent with our prediction that the number of sampled
columns scales as O(S/N log N) × OE. More significantly,
recovering the quantum mechanical Hessian in the molecular
mechanics basis provides a substantial advantage over recovery in
the atomic coordinates basis, reducing the number of columns
which must be sampled approximately by a factor of 2. This is
consistent with the quantummechanical Hessian being sparser in
the approximate eigenbasis of molecular mechanics normal
modes. Of course, nothing beats recovery in the exact eigenbasis,

which is as sparse as possible, but requires knowing the exact
Hessian in the first place.
In short, the take-home message of Figure 7 is that using

compressed sensing to recover a quantummechanical Hessian in
its basis of molecular mechanics normal modes is a practical
procedure which substantially reduces the computational cost of
the procedure.

■ CONCLUSIONS

We have presented a new approach for calculating matrices. This
method is suitable for applications where the cost of computing
each matrix element is high in comparison to the cost of linear
algebra operations. Our approach leverages the power of
compressed sensing to avoid individually computing every
matrix element, thereby achieving substantial computational
savings.
When applied to molecular vibrations of organic molecules,

our method results in accurate frequencies and normal modes
with about 30% of the expensive quantum mechanical
computations usually required, which represents a quite
significant 3× speed-up. Depending on the sparsity of the
Hessian, our method can also improve the overall scaling of the
computation. These computational savings could be further
improved by using more sophisticated compressed sensing
approaches, such as recovery algorithms based on belief
propagation57,58 which offer a recovery cost directly proportional
to the sparsity of the signal, and which could be easily integrated
into our approach.
Our method could also be applied to other common

calculations in computational chemistry, including the Fock
matrix in electronic structure or the Casida matrix in linear-
response time-dependent DFT.59 Nevertheless, our method is
not restricted to quantum chemistry and is applicable to many
problems throughout the physical sciences and beyond. The
main requirement is an a priori guess of a basis in which the
matrix to be computed is sparse. The optimal way to achieve this
requirement is problem-dependent, but as research into
sparsifying transformations continues to develop, we believe
our method will enable considerable computational savings in a
wide array of scientific fields.
The power of compressed sensing comes from the fact that it

optimizes the amount of information obtained per measurement,
and hence the required number of measurements scales with the
information content being measured, or in this case calculated.60

We believe compressed sensing can change computational
chemistry for the better by focusing attention on how to avoid
redundant computations and ensure that each computation
delivers as much new information about a system as possible. In
broad terms, the key insight of compressed sensing for
computational chemistry is to calculate only what should be
calculated.
In fact, a recent area of interest in compressed sensing is the

development of dictionary learning methods that do not directly
require knowledge of a sparsifying basis, but instead generate it
on-the-fly based on the problem.61,62 We believe that combining
our matrix recovery protocol with state-of-the-art dictionary
learning methods may eventually result in further progress
toward the calculation of scientific matrices. Beyond the problem
of computing matrices, our work demonstrates that compressed
sensing can be integrated into the core of computational
simulations as a workhorse to reduce costs by optimizing the
information obtained from each computation.

Figure 6. Number of columns which must be sampled as a function of
the number of rings in the polyacene to achieve a relative Frobenius
norm error less than 10−3 in the recovered molecular mechanics
Hessian. Legend entries indicate the (sparse) recovery basis, and
columns are always sampled in the DCT basis with respect to the
recovery basis. (Relative error is measured by averaging over ten
different trials which sample different sets of random columns.)

Figure 7. Number of columns which must be sampled as a function of
the number of rings in the polyacene to achieve a relative Frobenius
norm error less than 10−3 in the recovered quantum mechanical
Hessian. Legend entries indicate the (sparse) recovery basis, and
columns are always sampled in the DCT basis with respect to the
recovery basis. (Relative error is measured by averaging over ten
different trials which sample different sets of random columns.).
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Finally, we introduced an effective method of bootstrapping
low-accuracy calculations to reduce the number of high-accuracy
calculations that need to be done, something which is not simple
to do in quantum chemical calculations. In this new paradigm,
the role of expensive high-accuracy methods is to correct the low-
accuracy results, with a cost proportional to the magnitude of the
required correction, rather than recalculating the results from
scratch.

■ COMPUTATIONAL METHODS
The main computational task required to implement our
approach is the solution of the 1 optimization problem in eq
2. From the many algorithms available for this purpose, we rely
on the spectral projected gradient 1 (SPGL1) algorithm
developed by van den Berg and Friedlander42 and their freely
available implementation.
For all compressed sensing calculations in this paper, the

change-of-basis matrix between the sparse basis and the
measurement basis is given by the DCT matrix whose elements
are given by

π= − −⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥P

N N
i j

2
cos ( 1)

1
2ij

(7)

with the first rowmultiplied by an extra factor of 21/2 to guarantee
orthogonality.
For the numerical calculations we avoid explicitly constructing

the Kronecker product of P with itself and instead perform all
matrix multiplications in the SPGL1 algorithm directly in terms
of P. This latter approach has much smaller memory require-
ments and numerical costs, ensuring that the compressed sensing
process itself is rapid and not a bottleneck in our procedure. The
conditionPAPT =B is satisfied up to a relative error of 10−7 in the
Frobenius norm (vectorial 2-norm).
In order to perform the undersampling required for our

compressed sensing calculations, first the complete Hessians
were calculated, then they were converted to the measurement
basis, and finally they were randomly sampled by column.
Quantum mechanical Hessians were obtained with the QChem
4.244 software package, using density functional theory with the
B3LYP exchange-correlation functional48 and the 6-31G* basis
set. Molecular mechanics Hessians were calculated using the
MM3 force field49 and the open-source package Tinker 6.2.
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